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Abstract
This paper is devoted to the study of the classical solutions of a bosonic string
with a Euclidean worldsheet in AdS5 × S5. We generalize solutions presented
by Kruczenski et al to the case where we also include the dynamics of the string
on S5.

PACS numbers: 11.25.−w, 11.15.−q

1. Introduction

The AdS/CFT correspondence [1–3]1 shows deep relations between the N = 4 super Yang–
Mills (SYM) theory and the string theory in AdS5 × S5 where the classical string solutions
play an important role [7]; for a review and an extensive list of references, see [8, 9]. The
energies of classical strings have been shown to match with the anomalous dimensions of the
gauge-invariant operators, while an open string that ends on a curve at the boundary of AdS5

has been analyzed to study the strong coupling behavior of the Wilson loop in the gauge theory
[10–12].

Recently Alday and Maldacena, in a remarkable paper [13]2, computed the planar
4-gluon scattering amplitude at strong coupling in the N = 4 SYM theory using AdS/CFT
correspondence. The 4-gluon scattering amplitude was evaluated as the string theory
computation of the 4-cusp Wilson loop composed of four light-like segments in the T-dual
coordinates where a certain open string solution in AdS5 space is found to minimize the area of
the string surface whose boundary conditions are determined by the massless gluon momenta
and a dimensional regularization is used to regularize the IR divergence.

As was shown in [32] these results are closely related to the remarkable observations in
perturbative (planar N = 4) gauge theory: the scaling function f (λ) can be either found as a

1 For review, see [4–6].
2 For some recent papers, see [15–36].
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coefficient in the anomalous dimension of a gauge-invariant large spin twist two operator or
as a cusp anomaly of a light-like Wilson line [37, 38]. Then it was shown in [32] that this fact
has a nice explanation in dual perturbative AdS5 × S5 where the anomalous dimension of the
minimal twist operator is represented either by the energy of a closed string with large spin
S � 1 in AdS5 [7] or it follows the open string picture, i.e. from the area of a surface ending
on a cusp formed by two light-like Wilson lines on the boundary of AdS5 [39]. Then it was
shown that these two approaches are (under specific scaling limits) closely related when they
become equivalent upon certain analytic continuation that is needed to convert the Minkowski
worldsheet coordinates in the closed string case into the Euclidean one in the open string
Wilson loop case and AdS5, i.e. conformal SO(2, 4) transformation. Then it was shown in
[32] that the worldsheet surface studied in [13] can be related (before an IR regularization) to
the cusp Wilson loop surface found in [39] using SO(2, 4) isometry of AdS5.

It is remarkable that string with a Euclidean worldsheet that is embedded in spacetime with
a Minkowski signature plays such a crucial role in recent developments of string theory. In
fact, it is well known that string theories naturally contain in their spectra extended objects with
a Euclidean worldsheet signature (S-branes, S-strings [43–45]) even if their precise definition
is unclear. On the other hand, we mean that it is certainly important to study properties of
these objects and try to identify their possible applications. In fact the goal of this paper
is to investigate the dynamics of the bosonic string with the Euclidean worldsheet metric in
AdS5 × S5 and try to see how it is possible to extend the classical solution found in [32] to
a more general case. Recall that the ansatz given in [32] describes the light-like Wilson line
that ends on the boundary of AdS5. Our goal is to generalize this solution to the case when
we allow non-trivial configuration of the string on S5. We find that in the case of the light-like
Wilson line solution the dynamics of the string on AdS5 decouples from the dynamics on S5

as a consequence of the fact that the AdS5 part of the Virasoro constraints vanishes separately.
On the other hand, it is important to stress that the solution that describes dynamics of the
string on AdS5 corresponds to open string of infinite extent. Then in order to derive the finite
value of the string action that is evaluated on the classical solution we have to impose cut-off
on the time and space extent of the worldsheet theory. It is clear that the same cut-off has to
be performed for the S5 part of the action as well. Imposing this cut-off we can explicitly
evaluate the action on given solutions that presumably give some interesting phenomena in
dual CFT.

In order to gain more insight into our solutions we study another class of the Euclidean
solution that was given in [14, 32]. This solution arises from Euclidean continuation of
the worldsheet time coordinate from the homogeneous solutions [41, 42]. We find that
for this solution Virasoro constraints corresponding to dynamics on AdS5 are non-zero and
consequently the solution on AdS5 is related to the solution on S5. This result suggests that an
equivalence between Euclidean continuation of the homogeneous solutions given in [41, 42]
and the light-like Wilson loop solution—where dynamics on AdS5 decouples from dynamics
on S5—does not generally hold when we include non-trivial dynamics on S5.

The organization of this paper is as follows. In section 2, we introduce the notation and
we solve the equations of motion for the string with a Euclidean worldsheet theory that moves
on S5. We analyze two particular solutions, the first one corresponding to the homogeneous
motion and the second one that is analog of the magnon solution given in [40]. In section 3
we outline our results and suggest possible extensions of this work. Finally, in the appendix
we review the second class of the Euclidean solution found in [14] and discuss its relation to
the solution found in this paper.
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2. Euclidean string on AdS5 × S5

Our goal is to study exact solutions of the closed string theory in AdS5 × S5 where the
fundamental string has worldsheet theory with the Euclidean metric signature while the target
spacetime has Minkowski signature. Before we start this analysis we review notations for
coordinates in AdS5 [32]. In global coordinates (ρ, t, φ, θ1, θ2) the line element of AdS5 takes
the form

ds2 = R2
(
dρ2 − cosh2 ρ dt2 + sinh2 ρ

(
dφ2 + cos2 φ1 dθ2

1 + sin2 φ dθ2
2

))
, (2.1)

where R is the radius of AdS5 and S5. It is convenient to introduce the embedding coordinates
XM,M = (0, . . . , 5) on which SO(4, 2) is acting linearly. In these coordinates the line
element takes the form

ds2 = dXMηMN dXN, ηMN = (−1, 1, 1, 1, 1,−1). (2.2)

Note that the global coordinates are related to the embedding coordinates as

X0 + iX5 = R cosh ρ eit , X1 + iX2 = R sinh ρ cos φ eiθ1 ,

X3 + iX4 = R sinh ρ sin φ eiθ2 .
(2.3)

We can also introduce Poincaré coordinates where the boundary of AdS5 is at z = 0

ds2 = 1

z2
(dxm dxm + dz2), xmxm = −x2

0 + x2
i , i = 1, 2, 3, (2.4)

where

X0 = x0

z
, Xi = xi

z
, X4 = 1

2z
(−1 + z2 + xmxm), X5 = 1

2z
(1 + z2 + xmxm).

(2.5)

Finally, we also use the embedding coordinates YP , P = 0, . . . , 5 for the embedding
coordinates of S5 with Euclidean metric δPQ. Then the dynamics of bosonic string on
AdS5 × S5 is governed by the action

S = SAdS5 + SS5 ,

SAdS5 = 1

4πα′

∫
dσ dτ

√
γ (γ αβ∂αXM∂βXNηMN + �(XMηMNXN + R2)),

SS5 = 1

4πα′

∫
dτ dσ

√
γ (γ αβ∂αY P ∂βYQδPQ + �̃(Y P δPQYQ − R2)),

(2.6)

where γαβ is the worldsheet metric with a Euclidean signature so that in the conformal gauge
the line element takes the form ds2 = dτ 2 + dσ 2.

Finally, �, �̃ given in (2.6) are Lagrange multipliers that impose conditions
XMηMNXN = −R2, Y P δPQYQ = R2. Using (2.6) it is easy to determine corresponding
equations of motion. The variation of SAdS5 with respect to XM and with respect to � gives

∂α(
√

γ γ αβ∂βXM) − �XM = 0, XMXM = −R2. (2.7)

If we multiply the first equation in (2.7) with XM we obtain

� = 1

R2
∂aXM∂aXM, (2.8)
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where we also used the conformal gauge γαβ = δαβ . In the same way the variation of SS5 with
respect to YP and �̃ gives

∂α[δαβ∂βY P ] − �̃Y P = 0,

Y P δPQYQ = R2, �̃ = − 1

R2
∂αY P δPQ∂βYQδαβ.

(2.9)

Following [32] we consider an ansatz that for z = 0 ends on two light-like lines at boundary:

z =
√

2u, u = eατ−βσ , χ = ασ + βτ, (2.10)

where α, β are real parameters. If we write the line element in Poincaré coordinates as

ds2 = 1

z2

(
dz2 − du2 + u2 dχ2 + dx2

2 + dx2
3

)
, x0 = u cosh χ, x1 = u sinh χ,

(2.11)

then ansatz (2.10) takes the form

x0 = eατ−βσ cosh(ασ + βτ), x1 = eατ−βσ sinh(ασ + βτ), x2 = x3 = 0. (2.12)

Finally, in the embedding coordinates ansatz (2.10) takes the form

X0 = R√
2

cosh(ασ + βτ), X5 = R√
2

cosh(ατ − βσ),

X1 = R√
2

sinh(ασ + βτ), X4 = R√
2

sinh(ατ − βσ), X2 = X3 = 0.

(2.13)

By analogy with (2.13) we propose the following ansatz for the motion of string on S5:

Y 1 = R√
2

cos(γ τ + δσ ), Y 2 = R√
2

sin(γ τ + δσ ),

Y 3 = R√
2

cos(γ σ − δτ), Y 4 = R√
2

sin(γ σ − δτ),

(2.14)

where γ, δ are constants. Since we consider open string with infinite extent then the solution
above describes string that wraps infinitely many times compact space S5.

Now it is easy to see that for ansatz (2.13) � takes the form

� = (α2 + β2) (2.15)

and consequently ansatz (2.13) solves the equation of motion (2.7). In the same way (2.14)
gives

�̃ = −(γ 2 + δ2) (2.16)

and again it is easy to see that the equation of motion (2.9) are satisfied as well.
As the next step we impose Virasoro constraints. Explicitly, the variation of action (2.6)

with respect to worldsheet metric γ αβ implies the constraints

Tαβ = 2π√
γ

δS

δγ αβ
= T

AdS5
αβ + T

S5
αβ = 0, (2.17)

where

T AdS5
ττ = −T AdS5

σσ = 1

2α′ (∂τX
M∂τXM − ∂σXM∂σXM),

T AdS5
τσ = 1

α′ ∂τX
M∂σXM,

T S5
ττ = −T S5

σσ = 1

2α′ (∂τY
P ∂τYP − ∂σY P ∂σYP ),

T S5
τσ = 1

α′ ∂τY
P ∂σYP ,

(2.18)
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where we considered the metric in the form γαβ = diag(1, 1) and in the final step we used the
equation of motion for � and �̃. Now for ansatz (2.13) we obtain

T AdS5
ττ = 0, T AdS5

τσ = 0. (2.19)

On the other hand, the S5 part of the Virasoro constraints imply

T S5
ττ = 0, T S5

τσ = 0 (2.20)

and we see that these constraints vanish identically as well. However the analysis performed
above suggests that the dynamics on AdS5 decouples from the dynamics on S5 for ansatz
(2.13). On the other hand, when we evaluate action on given solutions we have to take
integration cut-off into account in a sense that we presume that the string has a finite extent.
In fact note that the AdS5 part of the action is equal to

SAdS5 =
√

λ

4π
(α2 + β2)

∫
dτ dσ, (2.21)

where
√

λ = R2

α′ . We see that in order to find a finite value of action (2.21) we have to presume
that the time and spatial coordinates that parameterize a string worldsheet are bounded. Then
we mean that it is natural that the same integration bounds have to be imposed both in AdS5

and in S5 parts of the action.
As in [32] we introduce the following cut-off prescription:

ln l < ατ − βσ < ln L, −�

2
< ασ + βτ <

�

2
. (2.22)

As the next step we introduce the coordinates

m = ατ − βσ, n = ασ + βτ,

τ = αm + βn

α2 + β2
, σ = nα − βm

α2 + β2
,

(2.23)

where the Jacobian of the transformation from (τ, σ ) to (m, n) is equal to J = 1
α2+β2 . Then

we can easily evaluate (2.21) and we obtain

SAdS5 =
√

λ

4π
(α2 + β2)

∫
dτ dσ

=
√

λ

4π
(α2 + β2)

∫ ln L

ln l

dm

∫ �
2

− �
2

dn J

=
√

λ

4π
� ln

L

l
. (2.24)

We see that the value of the action does not depend on α, β. On the other hand, when we
evaluate SS5 for ansatz (2.14) we obtain

SS5 =
√

λ

4π

∫
dτ dσ(γ 2 + δ2) =

√
λ

4π

γ 2 + δ2

α2 + β2
� ln

L

l
. (2.25)

However it would be more natural to express given action in terms of conserved charges. In
fact, it is easy to see that the action SS5 is manifestly invariant under rotation

Y ′M = �M
N YN ≈ YM + ωM

N YN, ωM
N = −ωN

M � 1 (2.26)

that implies an existence of following conserved charges:

JMN = 1

4πα′

∫
dσ(YM∂τY

N − YN∂τY
M). (2.27)

5
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Let us now define

J1 = J 12, J2 = J 34, J3 = J 56. (2.28)

Then for (2.14) we obtain

J1 =
√

λ

8π
γ

∫
dσ, J2 = −

√
λ

8π
δ

∫
dσ. (2.29)

It turns out, however, that for the integration domain defined in (2.22) these charges explicitly
depend on time. For that reason we restrict ourselves to the case when β = 0. Then
− �

2α
< σ < �

2α
and we obtain

J1 =
√

λ

8π
γ

∫ �
2α

− �
2α

dσ =
√

λ

8π

γ

α
�,

J2 = −
√

λ

8π
δ

∫ �
2α

− �
2α

dσ = −
√

λ

8π

δ

α
�,

(2.30)

and hence we can write

SS5 = 16
π√
λ

(
J 2

1 + J 2
2

) 1

�
ln

L

l
. (2.31)

In summary, we obtain that the action evaluated on the solution is equal to

S =
√

λ

4π
ln

L

l
� + 16

π√
λ

1

�
ln

L

l

(
J 2

1 + J 2
2

)
. (2.32)

To conclude, we found generalization of the solution [32] where we included non-trivial
dynamics on S5. We have also shown that this solution is valid for any values of parameters
α, β and that Virasoro constraints do not imply any relation between the motion on AdS5 and
S5. On the other hand, we have argued that when we wanted to evaluate worldsheet action on
these solutions we had to impose the same integration cut-off in both parts of the action.

Let us now consider ansatz that is an analog of the magnon-like solution [40]. To do
this we restrict ourselves to the motion of the string on S2. Then it is convenient to use the
parameterization

Y 1 = R sin θ cos φ, Y 2 = R sin θ sin φ, Y 3 = R cos θ, (2.33)

so that the line element on two sphere S2 takes the form

ds2 = R2(dθ2 + sin2 θ dφ2). (2.34)

Then the action that determines motion on S2 takes the form

SS2 = R2

4πα′

∫
dτ dσ [δαβ∂αθ∂βθ + sin2 θδαβ∂αφ∂βφ]. (2.35)

Further we presume that the motion on AdS5 is determined by ansatz (2.13) while for the
motion on S2 we propose an ansatz

θ = θ(y), φ = ωτ + φ̃(y), (2.36)

where

y = γ τ + δσ. (2.37)

Using the simple form of action (2.35) it is easy to determine corresponding equations of
motion for φ

[sin2 θ((γ 2 + δ2)φ̃′ + ωγ )]′ = 0, (2.38)
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while the equation of motion for θ takes the form

(γ 2 + δ2)θ ′′ − sin θ cos θ((ω + γ φ̃′)2 + δ2φ̃′2) = 0, (2.39)

where (· · ·)′ ≡ d(···)
dy

. Note that (2.38) implies

φ̃′ = 1

γ 2 + δ2

[
B

R2 sin2 θ
− ωγ

]
, (2.40)

where B is a constant. Further, using the fact that T
AdS5
αβ vanishes separately we use the

Virasoro constraints T S2
ττ = 0 in order to determine differential equation for θ

θ ′2 = − sin2 θ

γ 2 − δ2
[(ω + γ φ̃′)2 − δ2φ̃′2]

= − 1

(γ 2 + δ2)2

[
B2

R4 sin2 θ
− ω2δ2 sin2 θ +

4γBωδ2

R2(γ 2 − δ2)

]
(2.41)

using (2.40). On the other hand, when we consider the second Virasoro constraint T S2
τσ = 0

we obtain

T S2
τσ = θ ′2γ δ + sin2 θ(ωδφ̃′ + γ δφ̃′2) = 0 (2.42)

that together with the constraint T S2
ττ = 0 implies

φ̃′ = − ωγ

γ 2 + δ2
(2.43)

and consequently

φ = ωδ

γ 2 + δ2
(δτ − γ σ). (2.44)

Further, when we compare (2.43) with (2.40) we obtain that B = 0 and consequently (2.41)
implies the following differential equation:

θ ′ = ωδ

γ 2 + δ2
sin θ (2.45)

that has the solution

cos θ = −
sinh

(
ωδ

γ 2+δ2 (γ τ + δσ )
)

cosh
(

ωδ
γ 2+δ2 (γ τ + δσ )

) . (2.46)

Let us now evaluate the S2 part of the action for ansatz (2.36)

SS2 =
√

λ

4π

∫
dσ dτ [θ ′2(γ 2 + δ2) + sin2 θ [(ω + γ φ̃′)2 + δ2φ̃′2]]

=
√

λ

2π

∫
dτ dσ

ω2δ2

γ 2 + δ2
sin2 θ. (2.47)

In order to evaluate action (2.47) appropriately we have to impose the integration cut-off that
arise from the analysis of the dynamics of AdS5 string and we obtain

SS2 =
√

λ

2π

ω2δ2

γ 2 + δ2

∫ 1
α

ln L

1
α ln l

dτ

∫ �
2α

− �
2α

dσ
1

cosh2
(

ωδ
γ 2+δ2 (γ τ + δσ )

) =
√

λ

πα
ln

L

l
. (2.48)
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Let us calculate the charge related to the isometry along the φ direction

Jφ =
√

λ

2π

∫ �
2α

− �
2α

dσ sin2 θ(ω + γφ′)

=
√

λ

2π

δ2ω

γ 2 + δ2

∫ �
2α

− �
2α

dσ
1

cosh2
(

ωδ
γ 2+δ2 (γ τ + δσ )

) =
√

λ

π
(2.49)

and hence we obtain the result that

SS2 = Jφ

1

α
ln

L

l
. (2.50)

Interestingly, due to the profile of the classical solution the action does not depend on the
spatial cut-off �. It would certainly be interesting to find the dual CFT interpretation of such
a configuration.

It is important to stress that for α = β = 1 ansatz (2.13) is related to ansatz (A.5)
where α̃ = β̃ = 1. In other words, the scaling limit of the spinning closed string solution
is equivalent, upon an analytic continuation to the Euclidean worldsheet combined with a
discrete SO(2, 4) rotation in AdS5, to the global AdS5 version of the null cusp solution given
in (2.13) (for α = β = α̃ = β̃ = 1). However, as was shown above in the case when we
include non-trivial dynamics on S5 this is not generally true since now α̃, β̃ are functions of
the conserved charges related to the dynamics on S5, while in the case of the null cusp solution
(2.13) the dynamics on AdS5 decouples from the dynamics on S5 at least on the classical level.

3. Conclusion

In this section we give a short summary of results derived in this paper. Our goal was to study
some solutions of open string with a Euclidean worldsheet that propagates in AdS5 × S5.
We studied the solution presented in [32] and we found that this solution is valid for any
real parameters α, β. We have also shown that Virasoro constraints for this solution vanish.
This has an important consequence when we included non-trivial dynamics on S5 that now
naively decouples from the dynamics on AdS5. Since we imposed the cut-off on the string in
the sense of the finite extent of the worldsheet we showed that the actions evaluated on the
classical solutions contain the same cut-offs and hence give the same significant contributions
to scattering amplitudes in dual quantum field theory. It would certainly be very interesting to
clarify the relation of the solutions found there to scattering phenomena or expectation values
of Wilson loops in dual QFT living on the boundary of AdS5.

Then we also considered a second form of the solution that was presented in [14]. We
have shown that this solution has a non-zero contribution from the AdS5 part and hence the
motion on S5 does not decouple from the motion on AdS5. We calculated the values of
worldsheet actions on these solutions. Again, it would be desirable to find interpretations
of these solutions in dual QFT theory where the dynamics on S5 corresponds to non-trivial
expectation values of scalar fields in dual N = 4 SYM theory.

To conclude we mean that the dynamics of Euclidean string in AdS5 × S5 has many
interesting properties that deserve further study.
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Appendix. Review of the second type of Euclidean solution [14]

Now we review and also generalize the second type of the Euclidean worldsheet solution [14].
We start with the equations of motion for bosonic string with Minkowski metric

∂α[ηαβ∂βXM ] − 1

R2
(ηαβ∂αXN∂βXN)XM = 0,

∂α[ηαβ∂βY P ] +
1

R2
(ηαβ∂αYQ∂βYQ)YP = 0,

(A.1)

where η = diag(−1, 1). Let us then consider the following ansatz3:

X0 = R cosh α̃σ cos β̃τ ′, X1 = R sinh α̃σ cos β̃τ ′,

X5 = R cosh α̃σ sin β̃τ ′, X2 = R sinh α̃σ sin β̃τ ′,
(A.2)

where τ ′ is now time coordinate on Minkowski worldsheet. We again find that the equations
of motion are satisfied for any α̃, β̃. As the next step we perform an analytic continuation
τ ′ = −iτ and hence

X0 = R cosh α̃σ cosh β̃τ, X1 = R sinh α̃σ cosh β̃τ,

X5 = iR cosh α̃σ sinh β̃τ, X2 = iR sinh α̃σ sinh β̃τ ′.
(A.3)

If we now write X2 = iX′5, X5 = iX′2 we obtain

X′0 = R cosh α̃σ cosh β̃τ, X′1 = R sinh α̃σ cosh β̃τ,

X′2 = R cosh α̃σ sinh β̃τ, X′5 = R sinh α̃σ sinh β̃τ.
(A.4)

Finally we perform rotation in (0, 5) and (1, 2) planes and we obtain

X0 = X′0 + X′5
√

2
= R√

2
cosh(α̃σ + β̃τ ),

X5 = X′0 − X′5
√

2
= R√

2
cosh(α̃σ − β̃τ ),

X1 = X′1 + X′2
√

2
= R√

2
sinh(α̃σ + β̃τ ),

X2 = X′1 − X′2
√

2
= R

2
sinh(α̃σ − β̃τ ).

(A.5)

Let us now check properties of ansatz (A.5). Firstly, it is easy to see that � is equal to

� = (α̃2 + β̃2) (A.6)

and hence the equations of motions are satisfied. On the other hand, the Virasoro constraints
T AdS5

ττ = −T AdS5
σσ = 0 is equal to

T AdS5
ττ =

√
λ

4
(β̃2 − α̃2) (A.7)

and we see that the AdS5 part of the stress–energy tensor does not vanish. Then let us again
consider the motion on S5 that is parameterized with ansatz (2.14). In this case, Virasoro
constraints Tττ = T AdS5

ττ + T S5
ττ = 0 implies

β̃2 − α̃2 + γ 2 − δ2 = 0. (A.8)

3 Solution (A.2) belongs to the class of homogeneous string solutions as the rigid circular string found in [41, 42].
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Consequently the action evaluated on ansatz (2.14) and (A.5) is equal to

S =
√

λ

4π
[β̃2 + α̃2 + γ 2 + δ2]

∫
dτ dσ

=
√

λ

2πβ̃2
[β̃2 + γ 2]� ln

L

l
, (A.9)

where now we chose the integration cut-off − �

2β̃
< σ < �

2β̃
, 1

β̃
ln l < τ < 1

β̃
ln L. Then we

introduce charges [9]

S0 = 1

2πα′

∫
dσ(X5∂τX

0 − X0∂τX
5), S1 = 1

2πα′

∫
dσ(X1∂τX

2 − X2∂τX
1)

(A.10)

that for (A.5) are equal to

S0 = β̃

√
λ

4π

∫
dσ sinh 2α̃σ

=
√

λ

4π

β̃

α̃
cosh

α̃

β̃
� ≈

√
λ

4π

β̃

α̃
e

α̃

β̃
�
, S1 = −S0. (A.11)

In the same way we find that J1, J2 defined in (2.27) and (2.28) are equal to

J1 =
√

λ

8π

γ

β̃
�, J2 = −

√
λ

8π

δ

β̃
�. (A.12)

Then we can write the action in an alternative form

S = 8π√
λ

S2
0 e−2 α̃

β̃
�
� ln

L

l
+

32π√
λ

J 2
1

�
ln

L

l
. (A.13)

It is important to stress that now α̃ and β̃ are not arbitrary but are determined by charges J1, J2

through relation (A.8). In particular, the condition α̃ = β̃ = 1 can be imposed in the case
when γ 2 − δ2 = 0 (equivalently when J 2

1 = J 2
2 ). We will discuss consequence of this result

below.
Let us again consider the magnon-like solution where now we have to take into account

the non-zero contribution from the AdS5 part of the Virasoro constraint that we denote as
TAdS5 ≡ 1

4α′ κ
2. Then the vanishing of the total Tττ = T AdS5

ττ + T S2

ττ = 0 implies

θ ′2 = − κ2

R2(γ 2 − δ2)
− sin2 θ

γ 2 − δ2
[(ω + γ φ̃′)2 − δ2φ̃′2]

= − 1

(γ 2 + δ2)2

[
B2

R4 sin2 θ
− ω2δ2 sin2 θ +

κ2

R2
(γ 2 − δ2)

]
. (A.14)

On the other hand, the second Virasoro constraint Tτσ = 0 implies

Tτσ = θ ′2γ δ + sin2 θ(ωδφ̃′ + γ δφ̃′2) = 0 (A.15)

that together with the constraint Tττ = 0 gives

κ2γ + Bω = 0 (A.16)

using also the fact that the equation of motion for φ takes the form

φ̃′ = 1

γ 2 + δ2

[
B

R2 sin2 θ
− ωγ

]
. (A.17)
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Finally, we obtain

θ ′2 = ω2δ2

(γ 2 + δ2)2 sin2 θ
[(sin2 θ − M)(sin2 θ − N)],

M = − κ2

ω2R2
, N = κ2γ 2

δ2R2ω2
.

(A.18)

We see that in order to have a real solution we should perform an analytic continuation

ω = iω̃, γ = iγ̃ . (A.19)

Then we finally obtain

θ ′ = ω̃δ

(δ2 − γ̃ 2) sin θ

√
(sin2 θ − sin2 θ1)(sin2 θ2 − sin2 θ), (A.20)

where

sin2 θ1 = κ2

ω̃2R2
, sin2 θ2 = κ2γ̃ 2

R2δ2ω̃2
. (A.21)

Following [47] we can now distinguish two limiting configurations: either the giant magnon
solution where sin2 θ1 = 1 or the spike solution where sin2 θ2 = 1. Let us firstly consider the
giant magnon solution. The action evaluated on this solution takes the form

S =
√

λ

4π

∫
dτ dσ

[
(δ2 − γ̃ 2)θ ′2 + sin2 θ

ω̃2δ2

δ2 − γ̃ 2
+

B2

(δ2 − γ̃ 2)R4 sin2 θ

]

= ω̃2δ2
√

λ

4π(δ2 − γ̃ 2)

∫
dτ dσ

sin2 θ(1 + sin2 θ2)

sin2 θ
=

√
λ

2π

ω̃2(δ2 + γ̃ 2)

(δ2 − γ̃ 2)

�

β̃
ln

L

l
. (A.22)

Interestingly, for the spike solution
(
sin2θ2 = κ2γ̃ 2

R2δ2ω̃2 = 1
)

we find

S =
√

λ

2π

ω̃2δ2(δ2 + γ̃ 2)

γ̃ 2(δ2 − γ̃ 2)

�

β̃
ln

L

l
, (A.23)

where now ω̃ is related to κ2 = R2(β̃2 − α̃2) through relation (A.16).
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